مقایسه عملکرد ماشین بردار پشتیبان با سایر مدلهای هوشمند در شبیهسازی فرآیند بارش- رواناب
Authors
Abstract:
Simulation of rainfall-runoff process is a major step in water engineering studies and water resources management. In this study, the rainfall-runoff process of the Siminehroud monthly (1377-1390) were simulated using Support Vector Machines (SVM) with Radial Basis kernel Function, Polynomial and linear Bayesian Network (BN) with a PC Learning Algorithm, also conventional methods such as Artificial Neural Networks (ANNs) and Gene Expression Programming (GEP) were used; finally, the results were compared with each other. Correlation Coefficient (CC), Root Mean Square Error (RMSE) and Nash-Sutcliff coefficient (NS) were used to evaluate the performance of the models. The results indicate the acceptable performance of the models and GEP model shows the highest CC (CC = 0.91), minimum RMSE (RMSE = 1.3 m3/s) and NS = 0.82 in verification stage.
similar resources
مقایسه عملکرد ماشین بردار پشتیبان با سایر مدل های هوشمند در شبیه سازی فرآیند بارش- رواناب
شبیهسازی فرآیند بارش- رواناب به عنوان مهمترین گام در مطالعات مهندسی آب و مدیریت منابع آب است. در این تحقیق فرآیند بارش- رواناب ماهانه سیمینهرود در دوره آماری (1390-1377) با استفاده از مدلهای ماشین بردار پشتیبان با توابع کرنل پایه شعاعی، چندجملهای و خطی، مدل شبکه بیزی با الگوریتم یادگیری pc و نیز مدلهای متداول شبکه عصبی مصنوعی و برنامهریزی بیان ژن شبیهسازی شده و نتایج آنها مورد مقایسه ق...
full textارزیابی مدل حداقل مربعات ماشین بردار پشتیبان در برآورد تبخیر و مقایسه با مدلهای تجربی
در این تحقیق با استفاده از پارامترهای هواشناسی در دشت بیرجند در استان خراسان جنوبی در دوره 16 ساله به ارزیابی عملکرد آزمون گاما و مقایسه دقت مدلهای حداقل مربعات ماشینبردار و روشهای تجربی بهمنظور تخمین میزان تبخیر پرداخته شد. با استفاده از روش آزمون گاما از میان پارامترهای تأثیرگذار بر تبخیر، پارامترهای بهینه ورودی جهت مدلسازی تخمین تبخیر از میان 90 ترکیب معین، تعیین گردید. تعداد 7 ترکیب ب...
full textکاربرد شبکههای عصبی بیزین، ماشین بردار پشتیبان و برنامهریزی بیان ژنی در تحلیل بارش – رواناب ماهانه (مطالعه موردی:رودخانه کاکارضا)
شبیهسازی فرآیند بارش - رواناب اولین و مهمترین گام برای کنترل سیلاب در مدیریت منابع آب میباشد. در این تحقیق فرآیند بارش – رواناب ماهانه رودخانه کاکارضا واقع در استان لرستان، با استفاده از شبکه عصبی بیزین موردبررسی قرار گرفت و نتایج آن با روشهای برنامهریزی بیان ژن و ماشین بردار پشتیبان مقایسه گردید. بر این اساس ترکیبهای مختلفیبا استفاده از پارامترهای بارندگی و رواناب، طی دوره آماری (1...
full textپیشبینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)
مدلهای داده محور از جمله ابزارهایی هستند که به منظور شبیهسازی در علوم مختلف استفاده میشوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدلها با شبیهسازی فرآیند بارش-رواناب، مقدار رواناب را در حوزههای آبخیز بدون ایستگاه اندازهگیری و با حداقل زمان ممکن و کمترین هزینه برآورد میکنند. هدف ا...
full textمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
full textمقایسه مدلهای هوشمند در تخمین بارش ماهانه حوضه کاکارضا
برآورد بارش برای اجرای طرح های مطالعات منابع آب، خشکسالی، طرح های آمایش سرزمین، محیط زیست، آبخیزداری و طرح های جامع کشاورزی ضروری می باشد. در این پژوهش جهت تخمین بارش ماهانه دشت کاکارضا واقع در استان لرستان از مدل برنامه ریزی بیان ژن استفاده شد و نتایج آن با سایرروشهای هوشمند از جمله سیستم استنتاج فازی_عصبی و شبکه عصبی مصنوعی مقایسه گردید. برای این منظور از پارامترهای میانگین دما، رطوبت نسبی، ...
full textMy Resources
Journal title
volume 7 issue 13
pages 103- 92
publication date 2016-07
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023